.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "examples\01-transient_analyses\01-transient_easy_time_scoping.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_01-transient_analyses_01-transient_easy_time_scoping.py: .. _ref_transient_easy_time_scoping: Choose a time scoping for a transient analysis ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This example shows how to use a model's result to choose a time scoping. .. GENERATED FROM PYTHON SOURCE LINES 11-17 .. code-block:: Python import matplotlib.pyplot as plt from ansys.dpf import core as dpf from ansys.dpf.core import examples from ansys.dpf.core import operators as ops .. GENERATED FROM PYTHON SOURCE LINES 18-20 Create the model and display the state of the result. This transient result file contains several individual results, each at a different times. .. GENERATED FROM PYTHON SOURCE LINES 20-25 .. code-block:: Python transient = examples.find_msup_transient() model = dpf.Model(transient) print(model) .. rst-class:: sphx-glr-script-out .. code-block:: none DPF Model ------------------------------ Transient analysis Unit system: MKS: m, kg, N, s, V, A, degC Physics Type: Mechanical Available results: - displacement: Nodal Displacement - velocity: Nodal Velocity - acceleration: Nodal Acceleration - reaction_force: Nodal Force - stress: ElementalNodal Stress - elemental_volume: Elemental Volume - stiffness_matrix_energy: Elemental Energy-stiffness matrix - artificial_hourglass_energy: Elemental Hourglass Energy - thermal_dissipation_energy: Elemental thermal dissipation energy - kinetic_energy: Elemental Kinetic Energy - co_energy: Elemental co-energy - incremental_energy: Elemental incremental energy - elastic_strain: ElementalNodal Strain ------------------------------ DPF Meshed Region: 393 nodes 40 elements Unit: m With solid (3D) elements ------------------------------ DPF Time/Freq Support: Number of sets: 20 Cumulative Time (s) LoadStep Substep 1 0.010000 1 1 2 0.020000 1 2 3 0.030000 1 3 4 0.040000 1 4 5 0.050000 1 5 6 0.060000 1 6 7 0.070000 1 7 8 0.080000 1 8 9 0.090000 1 9 10 0.100000 1 10 11 0.110000 1 11 12 0.120000 1 12 13 0.130000 1 13 14 0.140000 1 14 15 0.150000 1 15 16 0.160000 1 16 17 0.170000 1 17 18 0.180000 1 18 19 0.190000 1 19 20 0.200000 1 20 .. GENERATED FROM PYTHON SOURCE LINES 26-30 Obtain minimum and maximum displacements at all times ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Create a displacement operator and set its time scoping request to the entire time frequency support: .. GENERATED FROM PYTHON SOURCE LINES 30-40 .. code-block:: Python disp = model.results.displacement disp_op = disp.on_all_time_freqs() # Chain the displacement operator with norm and min_max operators. min_max_op = ops.min_max.min_max_fc(ops.math.norm_fc(disp_op)) min_disp = min_max_op.outputs.field_min() max_disp = min_max_op.outputs.field_max() print(max_disp.data) .. rst-class:: sphx-glr-script-out .. code-block:: none [0.00031517 0.00163154 0.00409388 0.00693318 0.00939617 0.01105343 0.01135235 0.01016139 0.00796552 0.00521109 0.00250834 0.00070916 0.00019964 0.00098568 0.0030466 0.00581779 0.00846792 0.01049698 0.0113754 0.01074555] .. GENERATED FROM PYTHON SOURCE LINES 41-42 Plot the minimum and maximum displacements over time: .. GENERATED FROM PYTHON SOURCE LINES 42-51 .. code-block:: Python tdata = model.metadata.time_freq_support.time_frequencies.data plt.plot(tdata, max_disp.data, "r", label="Max") plt.plot(tdata, min_disp.data, "b", label="Min") plt.xlabel("Time (s)") plt.ylabel("Displacement (m)") plt.legend() plt.show() .. image-sg:: /examples/01-transient_analyses/images/sphx_glr_01-transient_easy_time_scoping_001.png :alt: 01 transient easy time scoping :srcset: /examples/01-transient_analyses/images/sphx_glr_01-transient_easy_time_scoping_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 52-57 Use time extrapolation ~~~~~~~~~~~~~~~~~~~~~~~ A local maximum can be seen on the plot between 0.05 and 0.075 seconds. Displacement is evaluated every 0.0005 seconds in this range to draw a nicer plot on this range. .. GENERATED FROM PYTHON SOURCE LINES 57-62 .. code-block:: Python offset = 0.0005 time_scoping = [0.05 + offset * i for i in range(0, int((0.08 - 0.05) / offset))] print(time_scoping) .. rst-class:: sphx-glr-script-out .. code-block:: none [0.05, 0.0505, 0.051000000000000004, 0.051500000000000004, 0.052000000000000005, 0.052500000000000005, 0.053000000000000005, 0.053500000000000006, 0.054000000000000006, 0.05450000000000001, 0.055, 0.0555, 0.056, 0.0565, 0.057, 0.0575, 0.058, 0.0585, 0.059000000000000004, 0.059500000000000004, 0.060000000000000005, 0.060500000000000005, 0.061, 0.0615, 0.062, 0.0625, 0.063, 0.0635, 0.064, 0.0645, 0.065, 0.0655, 0.066, 0.0665, 0.067, 0.0675, 0.068, 0.0685, 0.069, 0.0695, 0.07, 0.07050000000000001, 0.07100000000000001, 0.07150000000000001, 0.07200000000000001, 0.07250000000000001, 0.07300000000000001, 0.07350000000000001, 0.07400000000000001, 0.07450000000000001, 0.07500000000000001, 0.07550000000000001, 0.07600000000000001, 0.0765, 0.077, 0.0775, 0.078, 0.0785, 0.079, 0.0795] .. GENERATED FROM PYTHON SOURCE LINES 63-64 Create a displacement operator and set its time scoping request: .. GENERATED FROM PYTHON SOURCE LINES 64-74 .. code-block:: Python disp = model.results.displacement disp_op = disp.on_time_scoping(time_scoping)() # Chain the displacement operator with norm and min_max operators. min_max_op = ops.min_max.min_max_fc(ops.math.norm_fc(disp_op)) min_disp = min_max_op.outputs.field_min() max_disp = min_max_op.outputs.field_max() print(max_disp.data) .. rst-class:: sphx-glr-script-out .. code-block:: none [0.00939617 0.00947903 0.0095619 0.00964476 0.00972762 0.00981049 0.00989335 0.00997621 0.01005908 0.01014194 0.0102248 0.01030766 0.01039053 0.01047339 0.01055625 0.01063912 0.01072198 0.01080484 0.01088771 0.01097057 0.01105343 0.01106838 0.01108332 0.01109827 0.01111322 0.01112816 0.01114311 0.01115805 0.011173 0.01118794 0.01120289 0.01121784 0.01123278 0.01124773 0.01126267 0.01127762 0.01129256 0.01130751 0.01132245 0.0113374 0.01135235 0.0112928 0.01123325 0.0111737 0.01111415 0.01105461 0.01099506 0.01093551 0.01087596 0.01081642 0.01075687 0.01069732 0.01063777 0.01057822 0.01051868 0.01045913 0.01039958 0.01034003 0.01028049 0.01022094] .. GENERATED FROM PYTHON SOURCE LINES 75-76 Plot the minimum and maximum displacements over time: .. GENERATED FROM PYTHON SOURCE LINES 76-82 .. code-block:: Python plt.plot(time_scoping, max_disp.data, "rx", label="Max") plt.xlabel("Time (s)") plt.ylabel("Displacement (m)") plt.legend() plt.show() .. image-sg:: /examples/01-transient_analyses/images/sphx_glr_01-transient_easy_time_scoping_002.png :alt: 01 transient easy time scoping :srcset: /examples/01-transient_analyses/images/sphx_glr_01-transient_easy_time_scoping_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.189 seconds) .. _sphx_glr_download_examples_01-transient_analyses_01-transient_easy_time_scoping.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 01-transient_easy_time_scoping.ipynb <01-transient_easy_time_scoping.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 01-transient_easy_time_scoping.py <01-transient_easy_time_scoping.py>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_