.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "examples\04-advanced\11-cycles_to_failure.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_04-advanced_11-cycles_to_failure.py: .. _ref_cycles_to_failure: Calculate the number of cycles to fatigue failure ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This example shows how to generate and use a result file to calculate the cycles to failure result for a simple model. Material data is manually imported, Structural Steel from Ansys Mechanical: - Youngs Modulus (youngsSteel) - Poisson's Ratio (prxySteel) - SN curve (sn_data) The first step is to generate a simple model with high stress and save the results .rst file locally to myDir (default is "C:\\temp"). For this, we provide a short pyMAPDL script. .. line-block:: The second step uses PyDPF-Core to generate the cycles to failure result: The locally saved .rst file is imported and plotted. Then the von Mises stress is generated and plotted with DPF operators. The NumPy python package is then used to interpolate the cycles to failure values. The nodal von Mises equivalent stress value is used in the interpolation. (Note that the cycles to failure data must be manipulated to use NumPy interpolation) An empty field is then created and filled with the resulting cycles to failure values. The cycles to failure result is finally plotted. The cycles to failure result is the (interpolated) negative of the stress result. The higher the stress result, the lower the number of cycles to failure. .. GENERATED FROM PYTHON SOURCE LINES 33-38 .. code-block:: Python from ansys.dpf import core as dpf from ansys.dpf.core import examples import numpy as np .. GENERATED FROM PYTHON SOURCE LINES 39-40 The first step is to generate a simple model with high stress .. GENERATED FROM PYTHON SOURCE LINES 40-60 .. code-block:: Python # # Material parameters from Ansys Mechanical Structural Steel youngsSteel = 200e9 prxySteel = 0.3 sn_data = np.empty((11, 2)) # initialize empty np matrix sn_data[:, 0] = [10, 20, 50, 100, 200, 2000, 10000, 20000, 1e5, 2e5, 1e6] sn_data[:, 1] = [ 3.999e9, 2.8327e9, 1.896e9, 1.413e9, 1.069e9, 4.41e8, 2.62e8, 2.14e8, 1.38e8, 1.14e8, 8.62e7, ] .. GENERATED FROM PYTHON SOURCE LINES 61-62 The .rst file used is already available, but can be obtained using the short pyMAPDL code below: .. GENERATED FROM PYTHON SOURCE LINES 62-94 .. code-block:: Python # # ### Launch pymapdl to generate rst file in myDir # from ansys.mapdl.core import launch_mapdl # import os # # # mapdl = launch_mapdl() # mapdl.prep7() # # Model # mapdl.cylind(0.5, 0, 10, 0) # mapdl.mp("EX", 1, youngsSteel) # mapdl.mp("PRXY", 1, prxySteel) # mapdl.mshape(key=1, dimension='3d') # mapdl.et(1, "SOLID186") # mapdl.esize(0.3) # mapdl.vmesh('ALL') # # # #### Boundary Conditions: fixed constraint # mapdl.nsel(type_='S', item='LOC', comp='Z', vmin=0) # mapdl.d("all", "all") # mapdl.nsel(type_='S', item='LOC', comp='Z', vmin=10) # nnodes = mapdl.get("NumNodes", "NODE", 0, "COUNT") # mapdl.f(node="ALL", lab="fy", value=-13e6 / nnodes) # mapdl.allsel() # # # #### Solve # mapdl.run("/SOLU") # sol_output = mapdl.solve() # rst = os.path.join(mapdl.directory, 'file.rst') # mapdl.exit() # print('apdl model solved.') .. GENERATED FROM PYTHON SOURCE LINES 95-96 PyDPF-Core is then used to post-process the .rst file to estimate the cycles to failure. .. GENERATED FROM PYTHON SOURCE LINES 96-104 .. code-block:: Python # Comment the following line if solving the MAPDL problem first. rst = examples.download_cycles_to_failure() # Import the result as a DPF Model object. model = dpf.Model(rst) print(model) .. rst-class:: sphx-glr-script-out .. code-block:: none DPF Model ------------------------------ Static analysis Unit system: SI: m, kg, s, V, A, K Physics Type: Mechanical Available results: - displacement: Nodal Displacement - reaction_force: Nodal Force - element_nodal_forces: ElementalNodal Element nodal Forces - stress: ElementalNodal Stress - elemental_volume: Elemental Volume - stiffness_matrix_energy: Elemental Energy-stiffness matrix - artificial_hourglass_energy: Elemental Hourglass Energy - thermal_dissipation_energy: Elemental thermal dissipation energy - kinetic_energy: Elemental Kinetic Energy - co_energy: Elemental co-energy - incremental_energy: Elemental incremental energy - elastic_strain: ElementalNodal Strain - thermal_strain: ElementalNodal Thermal Strains - thermal_strains_eqv: ElementalNodal Thermal Strains eqv - swelling_strains: ElementalNodal Swelling Strains - structural_temperature: ElementalNodal Temperature ------------------------------ DPF Meshed Region: 4102 nodes 2356 elements Unit: With solid (3D) elements ------------------------------ DPF Time/Freq Support: Number of sets: 1 Cumulative Time (s) LoadStep Substep 1 1.000000 1 1 .. GENERATED FROM PYTHON SOURCE LINES 105-106 Get the von mises equivalent stress, requires an operator. .. GENERATED FROM PYTHON SOURCE LINES 106-111 .. code-block:: Python s_eqv_op = dpf.operators.result.stress_von_mises(data_sources=model) vm_stress_fc = s_eqv_op.eval() vm_stress_field = vm_stress_fc[0] vm_stress_field.plot(text="VM stress field") .. image-sg:: /examples/04-advanced/images/sphx_glr_11-cycles_to_failure_001.png :alt: 11 cycles to failure :srcset: /examples/04-advanced/images/sphx_glr_11-cycles_to_failure_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 112-113 Use NumPy to interpolate the results. .. GENERATED FROM PYTHON SOURCE LINES 113-121 .. code-block:: Python # Inverse the sn_data x_values = sn_data[:, 1][::-1] # the x values are the stress ranges in ascending order y_values = sn_data[:, 0][::-1] # y values are inverted cycles to failure # Interpolate cycles to failure for the VM values cycles_to_failure = np.interp(vm_stress_field.data, x_values, y_values) .. GENERATED FROM PYTHON SOURCE LINES 122-123 Generate a cycles_to_failure DPF Field .. GENERATED FROM PYTHON SOURCE LINES 123-138 .. code-block:: Python # Create an empty field cycles_to_failure_field = dpf.Field( nentities=len(vm_stress_field.scoping), nature=dpf.natures.scalar, location=dpf.locations.nodal, ) # Populate the field cycles_to_failure_field.scoping = vm_stress_field.scoping cycles_to_failure_field.meshed_region = vm_stress_field.meshed_region cycles_to_failure_field.data = cycles_to_failure # Plot the field sargs = dict(title="cycles", fmt="%.2e") cycles_to_failure_field.plot(text="Cycles to failure", scalar_bar_args=sargs) .. image-sg:: /examples/04-advanced/images/sphx_glr_11-cycles_to_failure_002.png :alt: 11 cycles to failure :srcset: /examples/04-advanced/images/sphx_glr_11-cycles_to_failure_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 8.929 seconds) .. _sphx_glr_download_examples_04-advanced_11-cycles_to_failure.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 11-cycles_to_failure.ipynb <11-cycles_to_failure.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 11-cycles_to_failure.py <11-cycles_to_failure.py>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_