.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "examples\08-python-operators\00-wrapping_numpy_capabilities.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_08-python-operators_00-wrapping_numpy_capabilities.py: .. _ref_wrapping_numpy_capabilities: Create a basic operator plugin ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This example shows how to create a basic operator plugin, which is for a single custom operator. This custom operator, ``easy_statistics``, computes simple statistics quantities on a scalar field with the help of the ``numpy`` package. The objective of this simple example is to show how routines for DPF can be wrapped in Python plugins. .. note:: This example requires DPF 4.0 (Ansys 2022R2) or above. For more information, see :ref:`ref_compatibility`. .. GENERATED FROM PYTHON SOURCE LINES 22-36 Create the operator ------------------- Creating a basic operator plugin consists of writing a single Python script. An operator implementation derives from the :class:`ansys.dpf.core.custom_operator.CustomOperatorBase` class and a call to the :py:func:`ansys.dpf.core.custom_operator.record_operator` method. The ``easy_statistics`` operator takes a field as an input and returns the first quartile, the median, the third quartile, and the variance. The Python operator and its recording are available in the ``easy_statistics.py`` file. Download and display the Python script. .. GENERATED FROM PYTHON SOURCE LINES 36-53 .. code-block:: Python from ansys.dpf.core import examples from ansys.dpf import core as dpf GITHUB_SOURCE_URL = ( "https://github.com/ansys/pydpf-core/" "raw/examples/first_python_plugins/python_plugins" ) EXAMPLE_FILE = GITHUB_SOURCE_URL + "/easy_statistics.py" operator_file_path = examples.downloads._retrieve_file( EXAMPLE_FILE, "easy_statistics.py", "python_plugins" ) with open(operator_file_path, "r") as f: for line in f.readlines(): print("\t\t\t" + line) .. rst-class:: sphx-glr-script-out .. code-block:: none import numpy as np from ansys.dpf import core as dpf from ansys.dpf.core.custom_operator import CustomOperatorBase, record_operator from ansys.dpf.core.operator_specification import CustomSpecification, SpecificationProperties, \ PinSpecification class EasyStatistics(CustomOperatorBase): @property def name(self): return "easy_statistics" @property def specification(self) -> CustomSpecification: spec = CustomSpecification() spec.description = "Compute the first quartile, the median, the third quartile and the variance of a scalar Field with numpy" spec.inputs = {0: PinSpecification("field", [dpf.Field, dpf.FieldsContainer], "scalar Field on which the statistics quantities is computed.")} spec.outputs = { 0: PinSpecification("first_quartile", [float]), 1: PinSpecification("median", [float]), 2: PinSpecification("third_quartile", [float]), 3: PinSpecification("variance", [float]), } spec.properties = SpecificationProperties("easy statistics", "math") return spec def run(self): field = self.get_input(0, dpf.Field) if field is None: field = self.get_input(0, dpf.FieldsContainer)[0] # compute stats first_quartile_val = np.quantile(field.data, 0.25) median_val = np.quantile(field.data, 0.5) third_quartile_val = np.quantile(field.data, 0.75) variance_val = np.var(field.data) self.set_output(0, first_quartile_val) self.set_output(1, median_val) self.set_output(2, third_quartile_val) self.set_output(3, float(variance_val)) self.set_succeeded() def load_operators(*args): record_operator(EasyStatistics, *args) .. GENERATED FROM PYTHON SOURCE LINES 54-58 Load the plugin --------------- You use the :py:func:`ansys.dpf.core.core.load_library` method to load the plugin. .. GENERATED FROM PYTHON SOURCE LINES 58-75 .. code-block:: Python # - The first argument is the path to the directory where the plugin # is located. # - The second argument is ``py_`` plus the name of the Python script. # - The third argument is the name of the function used to record operators. # import os from ansys.dpf import core as dpf from ansys.dpf.core import examples # Python plugins are not supported in process. dpf.start_local_server(config=dpf.AvailableServerConfigs.GrpcServer) operator_server_file_path = dpf.upload_file_in_tmp_folder(operator_file_path) dpf.load_library(os.path.dirname(operator_server_file_path), "py_easy_statistics", "load_operators") .. rst-class:: sphx-glr-script-out .. code-block:: none 'py_easy_statistics successfully loaded' .. GENERATED FROM PYTHON SOURCE LINES 76-77 Instantiate the operator. .. GENERATED FROM PYTHON SOURCE LINES 77-80 .. code-block:: Python new_operator = dpf.Operator("easy_statistics") .. GENERATED FROM PYTHON SOURCE LINES 81-87 Connect a workflow ------------------ Connect a workflow that computes the norm of the displacement to the ``easy_statistics`` operator. Methods of the ``easy_statistics`` class are dynamically added because specifications for the operator are defined in the plugin. .. GENERATED FROM PYTHON SOURCE LINES 89-101 .. graphviz:: digraph foo { graph [pad="0.5", nodesep="0.3", ranksep="0.3"] node [shape=box, style=filled, fillcolor="#ffcc00", margin="0"]; rankdir=LR; splines=line; ds [label="ds", shape=box, style=filled, fillcolor=cadetblue2]; ds -> displacement [style=dashed]; displacement -> norm; norm -> easy_statistics; } .. GENERATED FROM PYTHON SOURCE LINES 103-105 Use the operator ---------------- .. GENERATED FROM PYTHON SOURCE LINES 105-115 .. code-block:: Python ds = dpf.DataSources(dpf.upload_file_in_tmp_folder(examples.find_static_rst())) displacement = dpf.operators.result.displacement(data_sources=ds) norm = dpf.operators.math.norm(displacement) new_operator.inputs.connect(norm) print("first quartile is", new_operator.outputs.first_quartile()) print("median is", new_operator.outputs.median()) print("third quartile is", new_operator.outputs.third_quartile()) print("variance is", new_operator.outputs.variance()) .. rst-class:: sphx-glr-script-out .. code-block:: none first quartile is 0.0 median is 7.491665033689507e-09 third quartile is 1.4276663319275634e-08 variance is 3.054190175494998e-17 .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 1.598 seconds) .. _sphx_glr_download_examples_08-python-operators_00-wrapping_numpy_capabilities.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 00-wrapping_numpy_capabilities.ipynb <00-wrapping_numpy_capabilities.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 00-wrapping_numpy_capabilities.py <00-wrapping_numpy_capabilities.py>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_