.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "examples\08-python-operators\01-package_python_operators.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_08-python-operators_01-package_python_operators.py: .. _ref_python_plugin_package: Create a plug-in package with multiple operators ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This example shows how to create a plug-in package with multiple operators. The benefits of writing a package rather than simple scripts are: - **Componentization:** You can split the code into several Python modules or files. - **Distribution:** You can use standard Python tools to upload and download packages. - **Documentation:** You can add README files, documentation, tests, and examples to the package. For this example, the plug-in package contains two different operators: - One that returns all scoping IDs having data higher than the average - One that returns all scoping IDs having data lower than the average .. note:: This example requires DPF 4.0 (Ansys 2022R2) or above. For more information, see :ref:`ref_compatibility`. .. GENERATED FROM PYTHON SOURCE LINES 26-35 Create the plug-in package -------------------------- Each operator implementation derives from the :class:`ansys.dpf.core.custom_operator.CustomOperatorBase` class and a call to the :py:func:`ansys.dpf.core.custom_operator.record_operator` method, which records the operators of the plug-in package. Download the ``average_filter_plugin`` plug-in package that has already been created for you. .. GENERATED FROM PYTHON SOURCE LINES 35-63 .. code-block:: Python import os from ansys.dpf.core import examples from ansys.dpf import core as dpf print("\033[1m average_filter_plugin") file_list = ["__init__.py", "operators.py", "operators_loader.py", "common.py"] plugin_folder = None GITHUB_SOURCE_URL = ( "https://github.com/ansys/pydpf-core/raw/" "examples/first_python_plugins/python_plugins/average_filter_plugin" ) for file in file_list: EXAMPLE_FILE = GITHUB_SOURCE_URL + "/average_filter_plugin/" + file operator_file_path = examples.downloads._retrieve_file( EXAMPLE_FILE, file, "python_plugins/average_filter_plugin" ) plugin_folder = os.path.dirname(operator_file_path) print(f"\033[1m {file}:\n \033[0m") with open(operator_file_path, "r") as f: for line in f.readlines(): print("\t\t\t" + line) print("\n\n") .. rst-class:: sphx-glr-script-out .. code-block:: none average_filter_plugin __init__.py: from average_filter_plugin.operators_loader import load_operators operators.py: from ansys.dpf.core.custom_operator import CustomOperatorBase from ansys.dpf.core.operator_specification import CustomSpecification, PinSpecification, SpecificationProperties from ansys.dpf import core as dpf from average_filter_plugin import common class IdsWithDataHigherThanAverage(CustomOperatorBase): def run(self): field = self.get_input(0, dpf.Field) average = common.compute_average_of_field(field) ids_in = field.scoping.ids data_in = field.data out = [] for i, d in enumerate(data_in): if d >= average: out.append(ids_in[i]) scoping_out = dpf.Scoping(ids=out, location=field.scoping.location) self.set_output(0, scoping_out) self.set_succeeded() @property def specification(self): spec = CustomSpecification("Creates a scoping with all the ids having data higher or equal " "to the average value of the scalar field's data in input.") spec.inputs = { 0: PinSpecification("field", type_names=dpf.Field, document="scalar Field."), } spec.outputs = { 0: PinSpecification("scoping", type_names=dpf.Scoping), } spec.properties = SpecificationProperties(user_name="ids with data higher than average", category="logic") return spec @property def name(self): return "ids_with_data_higher_than_average" class IdsWithDataLowerThanAverage(CustomOperatorBase): def run(self): field = self.get_input(0, dpf.Field) average = common.compute_average_of_field(field) ids_in = field.scoping.ids data_in = field.data out = [] for i, d in enumerate(data_in): if d <= average: out.append(ids_in[i]) scoping_out = dpf.Scoping(ids=out, location=field.scoping.location) self.set_output(0, scoping_out) self.set_succeeded() @property def specification(self): spec = CustomSpecification("Creates a scoping with all the ids having data lower or equal " "to the average value of the scalar field's data in input.") spec.inputs = { 0: PinSpecification("field", type_names=dpf.Field, document="scalar Field."), } spec.outputs = { 0: PinSpecification("scoping", type_names=dpf.Scoping), } spec.properties = SpecificationProperties(user_name="ids with data lower than average", category="logic") return spec @property def name(self): return "ids_with_data_lower_than_average" operators_loader.py: from average_filter_plugin import operators from ansys.dpf.core.custom_operator import record_operator def load_operators(*args): record_operator(operators.IdsWithDataHigherThanAverage, *args) record_operator(operators.IdsWithDataLowerThanAverage, *args) common.py: import numpy def compute_average_of_field(field): return numpy.average(field.data) .. GENERATED FROM PYTHON SOURCE LINES 64-76 Load the plug-in package ------------------------ You use the function :py:func:`ansys.dpf.core.core.load_library` to load the plug-in package. - The first argument is the path to the directory where the plug-in package is located. - The second argument is ``py_``, where ```` is the name identifying the plug-in package. - The third argument is the name of the function exposed in the ``__init__`` file for the plug-in package that is used to record operators. .. GENERATED FROM PYTHON SOURCE LINES 76-93 .. code-block:: Python import os from ansys.dpf import core as dpf from ansys.dpf.core import examples # Python plugins are not supported in process. dpf.start_local_server(config=dpf.AvailableServerConfigs.GrpcServer) tmp = dpf.make_tmp_dir_server() dpf.upload_files_in_folder(dpf.path_utilities.join(tmp, "average_filter_plugin"), plugin_folder) dpf.load_library( os.path.join(dpf.path_utilities.join(tmp, "average_filter_plugin")), "py_average_filter", "load_operators", ) .. rst-class:: sphx-glr-script-out .. code-block:: none 'py_average_filter successfully loaded' .. GENERATED FROM PYTHON SOURCE LINES 94-95 Instantiate the operator. .. GENERATED FROM PYTHON SOURCE LINES 95-98 .. code-block:: Python new_operator = dpf.Operator("ids_with_data_lower_than_average") .. GENERATED FROM PYTHON SOURCE LINES 99-106 Connect a workflow ------------------ Connect a workflow that computes the norm of the displacement to the ``ids_with_data_lower_than_average`` operator. Methods of the ``ids_with_data_lower_than_average`` class are dynamically added because specifications for the operator are defined in the plug-in package. .. GENERATED FROM PYTHON SOURCE LINES 108-120 .. graphviz:: digraph foo { graph [pad="0.5", nodesep="0.3", ranksep="0.3"] node [shape=box, style=filled, fillcolor="#ffcc00", margin="0"]; rankdir=LR; splines=line; ds [label="ds", shape=box, style=filled, fillcolor=cadetblue2]; ds -> displacement [style=dashed]; displacement -> norm; norm -> ids_with_data_lower_than_average; } .. GENERATED FROM PYTHON SOURCE LINES 122-124 Use the operator ---------------- .. GENERATED FROM PYTHON SOURCE LINES 124-135 .. code-block:: Python ds = dpf.DataSources(dpf.upload_file_in_tmp_folder(examples.find_static_rst())) displacement = dpf.operators.result.displacement(data_sources=ds) norm = dpf.operators.math.norm(displacement) new_operator.inputs.connect(norm) new_scoping = new_operator.outputs.scoping() print("scoping in was:", norm.outputs.field().scoping) print("----------------------------------------------") print("scoping out is:", new_scoping) .. rst-class:: sphx-glr-script-out .. code-block:: none scoping in was: DPF Scoping: with Nodal location and 81 entities ---------------------------------------------- scoping out is: DPF Scoping: with Nodal location and 35 entities .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 1.458 seconds) .. _sphx_glr_download_examples_08-python-operators_01-package_python_operators.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 01-package_python_operators.ipynb <01-package_python_operators.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 01-package_python_operators.py <01-package_python_operators.py>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_