.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "examples\09-averaging\00-compute_and_average.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_09-averaging_00-compute_and_average.py: .. _ref_compute_and_average: Averaging order ~~~~~~~~~~~~~~~ This example compares two different workflows that accomplish the same task to show how the order of the operators can change the end result. - The first workflow extracts the stress field of a crankshaft under load from a result file, computes the equivalent (von Mises) stresses, and then applies an averaging operator to transpose them from ``ElementalNodal`` to ``Nodal`` positions. - The second workflow first transposes the stresses that come from the result file to a ``Nodal`` position and then calculates the von Mises stresses. The following images shows these workflows: .. graphviz:: digraph foo { graph [pad="0", nodesep="0.3", ranksep="0.3"] node [shape=box, style=filled, fillcolor="#ffcc0", margin="0"]; rankdir=LR; splines=line; node [fixedsize=true,width=2.5] stress01 [label="stress"]; stress02 [label="stress"]; vm01 [label="von_mises_eqv"]; vm02 [label="von_mises_eqv"]; avg01 [label="elemental_nodal_to_nodal", width=2.5]; avg02 [label="elemental_nodal_to_nodal", width=2.5]; subgraph cluster_1 { ds01 [label="data_src", shape=box, style=filled, fillcolor=cadetblue2]; ds01 -> stress01 [style=dashed]; stress01 -> vm01; vm01 -> avg01 label="Compute Von Mises then average stresses"; style=filled; fillcolor=lightgrey; } subgraph cluster_2 { ds02 [label="data_src", shape=box, style=filled, fillcolor=cadetblue2]; ds02 -> stress02 [style=dashed]; stress02 -> avg02; avg02 -> vm02 label="Average stresses then compute Von Mises"; style=filled; fillcolor=lightgrey; } } .. GENERATED FROM PYTHON SOURCE LINES 58-59 Import the necessary modules. .. GENERATED FROM PYTHON SOURCE LINES 59-63 .. code-block:: Python from ansys.dpf import core as dpf from ansys.dpf.core import examples .. GENERATED FROM PYTHON SOURCE LINES 64-65 Load the simulation results from an RST file. .. GENERATED FROM PYTHON SOURCE LINES 65-68 .. code-block:: Python analysis = examples.download_crankshaft() .. GENERATED FROM PYTHON SOURCE LINES 69-74 Create the first workflow ~~~~~~~~~~~~~~~~~~~~~~~~~ The first workflow applies the averaging operator after computing the equivalent stresses. To create it, define a function that computes the von Mises stresses in the crankshaft and then apply the averaging operator. .. GENERATED FROM PYTHON SOURCE LINES 74-105 .. code-block:: Python def compute_von_mises_then_average(analysis): # Create a model from the results of the simulation and retrieve its mesh model = dpf.Model(analysis) mesh = model.metadata.meshed_region # Apply the stress operator to obtain the stresses in the body stress_op = dpf.operators.result.stress() stress_op.inputs.connect(model) stresses = stress_op.outputs.fields_container() # Compute the von Mises stresses vm_op = dpf.operators.invariant.von_mises_eqv() vm_op.inputs.field.connect(stresses) von_mises = vm_op.outputs.field() # Apply the averaging operator to the von Mises stresses avg_op = dpf.operators.averaging.elemental_nodal_to_nodal() avg_op.inputs.connect(von_mises) avg_von_mises = avg_op.outputs.field() # Find the maximum value of the von Mises stress field min_max = dpf.operators.min_max.min_max() min_max.inputs.field.connect(avg_von_mises) max_val = min_max.outputs.field_max() return max_val.data[0] .. GENERATED FROM PYTHON SOURCE LINES 106-112 Create the second workflow ~~~~~~~~~~~~~~~~~~~~~~~~~~ The second workflow computes the equivalent stresses after applying the averaging operator. To create this workflow, first apply the averaging operator to the stress field in the crankshaft and then calculate the von Mises stresses, which are already located on a ``Nodal`` position. .. GENERATED FROM PYTHON SOURCE LINES 112-143 .. code-block:: Python def average_then_compute_von_mises(analysis): # Creating the model from the results of the simulation model = dpf.Model(analysis) mesh = model.metadata.meshed_region # Retrieving the stresses stress_op = dpf.operators.result.stress() stress_op.inputs.connect(model) stresses = stress_op.outputs.fields_container() # Averaging the stresses to a Nodal position avg_op = dpf.operators.averaging.elemental_nodal_to_nodal() avg_op.inputs.connect(stresses) avg_stresses = avg_op.outputs.field() # Computing the Von Mises stresses vm_op = dpf.operators.invariant.von_mises_eqv() vm_op.inputs.field.connect(avg_stresses) avg_von_mises = vm_op.outputs.field() # Finding the maximum Von Mises stress value min_max = dpf.operators.min_max.min_max() min_max.inputs.field.connect(avg_von_mises) max_val = min_max.outputs.field_max() return max_val.data[0] .. GENERATED FROM PYTHON SOURCE LINES 144-150 Plot the results ~~~~~~~~~~~~~~~~ Plot both von Mises stress fields side by side to compare them. - The first plot displays the results when the equivalent stresses are calculated first. - The second plot shows the results when the averaging is done first. .. GENERATED FROM PYTHON SOURCE LINES 150-154 .. code-block:: Python max1 = compute_von_mises_then_average(analysis) max2 = average_then_compute_von_mises(analysis) .. GENERATED FROM PYTHON SOURCE LINES 155-166 .. code-block:: Python diff = (max1 - max2) / max2 * 100 print("Max stress when Von Mises is computed first: {:.2f} Pa".format(max1)) print("Max stress when the stress averaging is done first: {:.2f} Pa".format(max2)) print( "The maximum Von Mises stress value is {:.2f}% higher when \ the averaging is done after the calculations.".format( diff ) ) .. rst-class:: sphx-glr-script-out .. code-block:: none Max stress when Von Mises is computed first: 12494955907.48 Pa Max stress when the stress averaging is done first: 11860260659.06 Pa The maximum Von Mises stress value is 5.35% higher when the averaging is done after the calculations. .. GENERATED FROM PYTHON SOURCE LINES 167-170 Even though both workflows apply the same steps to the same initial data, their final results are different because of the order in which the operators are applied. .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 40.291 seconds) .. _sphx_glr_download_examples_09-averaging_00-compute_and_average.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 00-compute_and_average.ipynb <00-compute_and_average.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 00-compute_and_average.py <00-compute_and_average.py>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_