Note
Go to the end to download the full example code.
Solve harmonic problem (with damping) using matrix inverse#
This example shows how to create a harmonic (over frequencies) fields container for an analysis with damping. This fields container is then used to solve the problem Ma+Dv+Ku=F by inverting the matrix
import math
from ansys.dpf import core as dpf
from ansys.dpf.core import operators as ops
Create 2D (x,y) matrix fields for inertia, damping, and stiffness.
freq = [25, 50, 100, 200, 400]
dim = 2 # dimension of matrix
fM0 = dpf.fields_factory.create_matrix_field(1, dim, dim)
fM0.append([0.0, 1.0, 2.0, 3.0], 1)
fK0 = dpf.fields_factory.create_matrix_field(1, dim, dim)
fK0.append([4.0, 8.0, 0.0, 1.0], 1)
fC0 = dpf.fields_factory.create_matrix_field(1, dim, dim)
fC0.append([7.0, 5.0, 9.0, 1.0], 1)
Create a fields container for real and imaginary parts for each frequency.
reals = {}
ims = {}
for k, f in enumerate(freq):
omega = 2.0 * math.pi * f
omega2 = omega**2
real = fK0 + fM0 * omega2
imag = fC0 * omega
reals[f] = real.outputs.field()
ims[f] = imag.outputs.field()
cplx_fc = dpf.fields_container_factory.over_time_freq_complex_fields_container(
reals, ims, time_freq_unit="Hz"
)
Use DPF operators to inverse the matrix and then compute the amplitude and the phase.
inverse = ops.math.matrix_inverse(cplx_fc)
component = ops.logic.component_selector_fc(inverse, 0)
amp = ops.math.amplitude_fc(component)
phase = ops.math.phase_fc(component)
Get the phase and amplitude and then plot it over frequencies.
amp_over_frequency = amp.outputs.fields_container()
phase_over_frequency = phase.outputs.fields_container()
time_freq_support = amp_over_frequency.time_freq_support
amp_array = []
phase_array = []
for f in amp_over_frequency:
amp_array.append(f.data)
for f in phase_over_frequency:
phase_array.append(f.data * 180.0 / math.pi)
import matplotlib.pyplot as plt
plt.figure()
plt.plot(time_freq_support.time_frequencies.data, amp_array, "r", label="amplitude")
plt.xlabel("Frequency (Hz)")
plt.ylabel("Displacement ampliude (m)")
plt.legend()
plt.show()
plt.figure()
plt.plot(time_freq_support.time_frequencies.data, phase_array, "r", label="phase")
plt.xlabel("Frequency (Hz)")
plt.ylabel("Displacement phase (deg)")
plt.legend()
plt.show()
Total running time of the script: (0 minutes 0.175 seconds)