排气歧管的热结构分析#

本例说明如何映射 CFD 分析结果并执行有限元 (FE) 分析。

Objective#

在本例中,我们将进行有限元分析,计算排气歧管中产生的热应力。歧管由结构钢制成,其中的温度分布通过 CFD 运行获得。 我们导入这些数据并将其映射到 FE 网格上,然后使用高斯插值内核定义每个节点的热负荷。

Exhaust Manifold CFD Results

Procedure#

  • 启动 MAPDL 实例

  • 导入几何体、分配材料属性并生成 FE 网格。

  • 导入温度分布并将其映射到 FE 网格上

  • 定义边界条件并使用导入的温度分布来定义热负荷。

  • 求解模型并绘制相关结果。

Additional Packages used#

  • Numpy for using data as arrays

  • Pandas to import csv file (to install use: pip install pandas)

  • PyVista for performing Gaussian interpolation

Boundary Conditions#

  • Highlighted faces are fully constrained.

Boundary Conditions used for FE Analysis

Import all necessary modules and launch an instance of MAPDL#

import numpy as np
import pandas as pd
import pyvista as pv

from ansys.mapdl.core import launch_mapdl
from ansys.mapdl.core.examples import download_manifold_example_data

# start mapdl
mapdl = launch_mapdl()
print(mapdl)
Product:             Ansys Mechanical Enterprise
MAPDL Version:       23.1
ansys.mapdl Version: 0.67.0

Import geometry, assign material properties and generate a mesh.#

# download the necessary files
paths = download_manifold_example_data()
geometry = paths["geometry"]
mapping_data = paths["mapping_data"]

# reset mapdl & import geometry
mapdl.clear()
mapdl.input(geometry)

# Define element attributes
# Second-order tetrahedral elements (SOLID187)
mapdl.prep7()
mapdl.et(1, "SOLID187")

# Define material properties of structural steel
E = 2e11  # Youngs modulus
NU = 0.3  # Poisson's ratio
CTE = 1.2e-5  # Coeff. of thermal expansion
mapdl.mp("EX", 1, E)
mapdl.mp("PRXY", 1, NU)
mapdl.mp("ALPX", 1, CTE)

# Define mesh controls and generate mesh
mapdl.esize(0.0075)
mapdl.vmesh("all")

# Save mesh as VTK object
print(mapdl.mesh)
grid = mapdl.mesh.grid  # save mesh as a VTK object
ANSYS Mesh
  Number of Nodes:              87614
  Number of Elements:           44266
  Number of Element Types:      1
  Number of Node Components:    0
  Number of Element Components: 0

Import and map temperature data to FE mesh#

# Import csv file and save data to a NumPy array
temperature_file = pd.read_csv(mapping_data, sep=",", header=None, low_memory=False)
temperature_data = temperature_file.values  # Save data to a NumPy array
nd_temp_data = temperature_data[1:, 1:].astype(float)  # Change data type to Float

# Map temperature data to FE mesh
# Convert imported data into PolyData format
wrapped = pv.PolyData(nd_temp_data[:, :3])  # Convert NumPy array to PolyData format
wrapped["temperature"] = nd_temp_data[
    :, 3
]  # Add a scalar variable 'temperature' to PolyData

# Perform data mapping
inter_grid = grid.interpolate(
    wrapped,
    sharpness=5,
    radius=0.0001,
    strategy="closest_point",
    progress_bar=True,
)  # Map the imported data to MAPDL grid
inter_grid.plot(show_edges=False)  # Plot the interpolated data on MAPDL grid
temperature_load_val = pv.convert_array(
    pv.convert_array(inter_grid.active_scalars)
)  # Save temperatures interpolated to each node as NumPy array
node_num = inter_grid.point_data["ansys_node_num"]  # Save node numbers as NumPy array
exhaust manifold thermal stress
  0%|                                                                                                                                                [00:00<?]
Interpolating:   0%|                                                                                                                                 [00:00<?]
Interpolating: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████[00:00<00:00]
Interpolating: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████[00:00<00:00]

Apply loads and boundary conditions and solve the model#

# Read all nodal coords. to an array & extract the X and Y min. bounds
array_nodes = mapdl.mesh.nodes
Xmin = np.amin(array_nodes[:, 0])
Ymin = np.amin(array_nodes[:, 1])

# Enter /SOLU processor to apply loads and BCs
mapdl.finish()
mapdl.slashsolu()

# Enter non-interactive mode to assign thermal load at each node using imported data
with mapdl.non_interactive:
    for node, temp in zip(node_num, temperature_load_val):
        mapdl.bf(node, "TEMP", temp)
# Use the X and Y min. bounds to select nodes from five surfaces that are to be fixed and created a component and fix all DOFs.
mapdl.nsel("s", "LOC", "X", Xmin)  # Select all nodes whose X coord.=Xmin
mapdl.nsel(
    "a", "LOC", "Y", Ymin
)  # Select all nodes whose Y coord.=Ymin and add to previous selection
mapdl.cm("fixed_nodes", "NODE")  # Create a nodal component 'fixed_nodes'
mapdl.allsel()  # Revert active selection to full model
mapdl.d(
    "fixed_nodes", "all", 0
)  # Impose fully fixed constraint on component created earlier

# Solve the model
output = mapdl.solve()
print(output)
*** NOTE ***                            CP =      23.875   TIME= 00:31:54
 The automatic domain decomposition logic has selected the MESH domain
 decomposition method with 2 processes per solution.

 *****  MAPDL SOLVE    COMMAND  *****

 *** WARNING ***                         CP =      23.922   TIME= 00:31:54
 Previous testing revealed that 123 of the 44266 selected elements
 violate shape warning limits.  To review warning messages, please see
 the output or error file, or issue the CHECK command.

 *** NOTE ***                            CP =      23.922   TIME= 00:31:54
 The model data was checked and warning messages were found.
  Please review output or errors file (
 C:\Users\ff\AppData\Local\Temp\ansys_fdcyykaruq\file0.err ) for these
 warning messages.

 *** SELECTION OF ELEMENT TECHNOLOGIES FOR APPLICABLE ELEMENTS ***
                ---GIVE SUGGESTIONS ONLY---

 ELEMENT TYPE         1 IS SOLID187. IT IS NOT ASSOCIATED WITH FULLY INCOMPRESSIBLE
 HYPERELASTIC MATERIALS. NO SUGGESTION IS AVAILABLE.



 *** MAPDL - ENGINEERING ANALYSIS SYSTEM  RELEASE 2023 R1          23.1     ***
 Ansys Mechanical Enterprise
 20120530  VERSION=WINDOWS x64   00:31:54  JAN 24, 2024 CP=     23.938

  File: D:\AICs\PyAnsys\Getting Started With PyMAPDL\Dataflow Between Python an



                       S O L U T I O N   O P T I O N S

   PROBLEM DIMENSIONALITY. . . . . . . . . . . . .3-D
   DEGREES OF FREEDOM. . . . . . UX   UY   UZ
   ANALYSIS TYPE . . . . . . . . . . . . . . . . .STATIC (STEADY-STATE)
   GLOBALLY ASSEMBLED MATRIX . . . . . . . . . . .SYMMETRIC

 *** NOTE ***                            CP =      23.969   TIME= 00:31:54
 Present time 0 is less than or equal to the previous time.  Time will
 default to 1.

 *** NOTE ***                            CP =      23.969   TIME= 00:31:54
 The conditions for direct assembly have been met.  No .emat or .erot
 files will be produced.



     D I S T R I B U T E D   D O M A I N   D E C O M P O S E R

  ...Number of elements: 44266
  ...Number of nodes:    87614
  ...Decompose to 2 CPU domains
  ...Element load balance ratio =     1.000


                      L O A D   S T E P   O P T I O N S

   LOAD STEP NUMBER. . . . . . . . . . . . . . . .     1
   TIME AT END OF THE LOAD STEP. . . . . . . . . .  1.0000
   NUMBER OF SUBSTEPS. . . . . . . . . . . . . . .     1
   STEP CHANGE BOUNDARY CONDITIONS . . . . . . . .    NO
   PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT
   DATABASE OUTPUT CONTROLS. . . . . . . . . . . .ALL DATA WRITTEN
                                                  FOR THE LAST SUBSTEP


 SOLUTION MONITORING INFO IS WRITTEN TO FILE= file.mntr


 Range of element maximum matrix coefficients in global coordinates
 Maximum = 1.590000175E+11 at element 2593.
 Minimum = 317042229 at element 29914.

   *** ELEMENT MATRIX FORMULATION TIMES
     TYPE    NUMBER   ENAME      TOTAL CP  AVE CP

        1     44266  SOLID187      1.391   0.000031
 Time at end of element matrix formulation CP = 24.984375.

 DISTRIBUTED SPARSE MATRIX DIRECT SOLVER.
  Number of equations =      251964,    Maximum wavefront =    270

  Process memory allocated for solver              =   581.364 MB
  Process memory required for in-core solution     =   557.506 MB
  Process memory required for out-of-core solution =   218.250 MB

  Total memory allocated for solver                =  1169.853 MB
  Total memory required for in-core solution       =  1121.657 MB
  Total memory required for out-of-core solution   =   438.542 MB

 *** NOTE ***                            CP =      25.500   TIME= 00:31:56
 The Distributed Sparse Matrix Solver is currently running in the
 in-core memory mode.  This memory mode uses the most amount of memory
 in order to avoid using the hard drive as much as possible, which most
 often results in the fastest solution time.  This mode is recommended
 if enough physical memory is present to accommodate all of the solver
 data.
 Distributed sparse solver maximum pivot= 2.447219091E+11 at node 53378
 UY.
 Distributed sparse solver minimum pivot= 100225135 at node 42731 UZ.
 Distributed sparse solver minimum pivot in absolute value= 100225135 at
 node 42731 UZ.

   *** ELEMENT RESULT CALCULATION TIMES
     TYPE    NUMBER   ENAME      TOTAL CP  AVE CP

        1     44266  SOLID187      1.422   0.000032

   *** NODAL LOAD CALCULATION TIMES
     TYPE    NUMBER   ENAME      TOTAL CP  AVE CP

        1     44266  SOLID187      0.250   0.000006
 *** LOAD STEP     1   SUBSTEP     1  COMPLETED.    CUM ITER =      1
 *** TIME =   1.00000         TIME INC =   1.00000      NEW TRIANG MATRIX


 *** MAPDL BINARY FILE STATISTICS
  BUFFER SIZE USED= 16384
       60.750 MB WRITTEN ON ASSEMBLED MATRIX FILE: file0.full
       21.875 MB WRITTEN ON RESULTS FILE: file0.rst

Post-processing#

# Enter post-processor
mapdl.post1()
mapdl.set(1, 1)  # Select first load step
mapdl.post_processing.plot_nodal_eqv_stress()  # Plot equivalent stress
exhaust manifold thermal stress

Exit MAPDL instance#

mapdl.exit()

Total running time of the script: (1 minutes 36.470 seconds)