Running an input file - spotweld SHELL181 example#

This MAPDL example demonstrates how to model spot welding on three thin sheets of metal. Here, the full input file is simply run using the PyMAPDL interface.

Using the following commands, you can directly use an APDL script within a PyMAPDL session with the following commands:

Script initialization#

from ansys.mapdl.core import launch_mapdl
from ansys.mapdl.core.examples.downloads import download_example_data

mapdl = launch_mapdl()

Download and run an MAPDL script#

spotweld_data = download_example_data(
    filename="spotweld.inp", directory="pymapdl/spotweld"
)
mapdl.input(spotweld_data)
"\n /INPUT FILE= C:\\Users\\ff\\AppData\\Local\\Ansys\\ansys_mapdl_core\\examples\\spotweld.inp  LINE=       0\n\n *** MAPDL - ENGINEERING ANALYSIS SYSTEM  RELEASE 2023 R1          23.1     ***\n Ansys Mechanical Enterprise                       \n 20120530  VERSION=WINDOWS x64   13:24:46  MAR 15, 2024 CP=      0.156\n\n                                                                               \n\n\n\n          ***** MAPDL ANALYSIS DEFINITION (PREP7) *****\n\n NUMBER KEY SET TO  0  -1=NONE  0=BOTH  1=COLOR  2=NUMBER\n\n AREA NUMBERING KEY =  1\n\n KEYPOINT        1                  X,Y,Z=   2.00000       10.0000       0.00000      IN CSYS=        0\n\n KEYPOINT        2                  X,Y,Z=   10.0000       10.0000       0.00000      IN CSYS=        0\n\n KEYPOINT        3                  X,Y,Z=   10.0000      0.150000       0.00000      IN CSYS=        0\n\n KEYPOINT        4                  X,Y,Z=   14.0000      0.150000       0.00000      IN CSYS=        0\n\n LINE CONNECTS KEYPOINTS      1     2\n  LINE NO.=     1  KP1=      1  TAN1=   -1.0000   0.0000   0.0000\n                   KP2=      2  TAN2=    1.0000   0.0000   0.0000\n\n LINE CONNECTS KEYPOINTS      2     3\n  LINE NO.=     2  KP1=      2  TAN1=    0.0000   1.0000   0.0000\n                   KP2=      3  TAN2=    0.0000  -1.0000   0.0000\n\n LINE CONNECTS KEYPOINTS      3     4\n  LINE NO.=     3  KP1=      3  TAN1=   -1.0000   0.0000   0.0000\n                   KP2=      4  TAN2=    1.0000   0.0000   0.0000\n\n FILLET BETWEEN LINES      1     2  RADIUS=   3.0000    \n  CENTER KEYPOINT=      0\n  LINE NO.=     4  KP1=      5  TAN1=   -1.0000  -0.0000   0.0000\n                   KP2=      6  TAN2=   -0.0000  -1.0000   0.0000\n\n FILLET BETWEEN LINES      2     3  RADIUS=   2.0000    \n  CENTER KEYPOINT=      0\n  LINE NO.=     5  KP1=      7  TAN1=   -0.0000   1.0000   0.0000\n                   KP2=      8  TAN2=    1.0000   0.0000   0.0000\n\n KEYPOINT        9                  X,Y,Z=   0.00000       0.00000       0.00000      IN CSYS=        0\n\n KEYPOINT       10                  X,Y,Z=   11.0000       0.00000       0.00000      IN CSYS=        0\n\n KEYPOINT       11                  X,Y,Z=   15.0000       0.00000       0.00000      IN CSYS=        0\n\n LINE CONNECTS KEYPOINTS      9    10\n  LINE NO.=     6  KP1=      9  TAN1=   -1.0000   0.0000   0.0000\n                   KP2=     10  TAN2=    1.0000   0.0000   0.0000\n\n LINE CONNECTS KEYPOINTS     10    11\n  LINE NO.=     7  KP1=     10  TAN1=   -1.0000   0.0000   0.0000\n                   KP2=     11  TAN2=    1.0000   0.0000   0.0000\n\n KEYPOINT       12                  X,Y,Z=   0.00000       10.0000       0.00000      IN CSYS=        0\n\n SELECT       FOR ITEM=LINE COMPONENT=    \n  IN RANGE         6 TO          7 STEP          1\n\n        2  LINES (OF        7  DEFINED) SELECTED BY LSEL  COMMAND.\n\n ROTATE LINES      6,     7,\n      ABOUT THE AXIS DEFINED BY KEYPOINTS      9    12\n     DEGREES OF ARC=    12.00   NUMBER OF SEGMENTS=   1\n\n SELECT       FOR ITEM=LINE COMPONENT=    \n  IN RANGE         1 TO          5 STEP          1\n\n        5  LINES (OF       11  DEFINED) SELECTED BY LSEL  COMMAND.\n\n ROTATE LINES      1,     2,     3,     4,     5,\n      ABOUT THE AXIS DEFINED BY KEYPOINTS      9    12\n     DEGREES OF ARC=    12.00   NUMBER OF SEGMENTS=   1\n\n REVERSE THE NORMAL DIRECTION OF AREA(S)       1\n      AND MAKE ANY AREA ELEMENTS CONSISTENT WITH THE NEW NORMAL DIRECTION(S).\n\n REVERSE THE NORMAL DIRECTION OF AREA(S)       2\n      AND MAKE ANY AREA ELEMENTS CONSISTENT WITH THE NEW NORMAL DIRECTION(S).\n\n SELECT       FOR ITEM=AREA COMPONENT=    \n  IN RANGE         3 TO          7 STEP          1\n\n        5  AREAS (OF        7  DEFINED) SELECTED BY  ASEL  COMMAND.\n\n SYMMETRY TRANSFORMATION OF AREAS         USING COMPONENT  Y  \n   SET IS ALL SELECTED AREAS        \n\n SELECT ALL ENTITIES OF TYPE= ALL  AND BELOW\n\n GENERATE HARD POINT ON AREA      7 WITH X,Y,Z=   12.9000      0.150000      -1.36000      IN CSYS=  0\n ASSIGN TO HARD POINT     33\n\n HARDPOINT    33   X,Y,Z=   12.9000      0.150000      -1.36000      IN CSYS=  0\n\n view point for window  1    1.0000      1.0000      1.0000    \n\n PLOT AREAS FROM     1  TO    12  BY      1\n\n CUMULATIVE DISPLAY NUMBER   1 WRITTEN TO FILE file000.png       - RASTER MODE.\n DISPLAY TITLE= \n                                                                         \n\n PLOT LINES FROM     1  TO    38  BY    1\n\n CUMULATIVE DISPLAY NUMBER   1 WRITTEN TO FILE file000.png       - RASTER MODE.\n DISPLAY TITLE= \n                                                                         \n\n PLOT KEY POINTS FROM       1 TO      33 BY      1\n\n CUMULATIVE DISPLAY NUMBER   1 WRITTEN TO FILE file000.png       - RASTER MODE.\n DISPLAY TITLE= \n                                                                         \n\n ELEMENT TYPE          1 IS SHELL181     4-NODE SHELL                \n  KEYOPT( 1- 6)=        0      0      0        0      0      0\n  KEYOPT( 7-12)=        0      0      0        0      0      0\n  KEYOPT(13-18)=        0      0      0        0      0      0\n\n CURRENT NODAL DOF SET IS  UX    UY    UZ    ROTX  ROTY  ROTZ\n  THREE-DIMENSIONAL MODEL\n\n REAL CONSTANT SET          1  ITEMS   1 TO   6\n   0.15000       0.0000       0.0000       0.0000       0.0000       0.0000    \n\n REAL CONSTANT SET          2  ITEMS   1 TO   6\n   0.10000       0.0000       0.0000       0.0000       0.0000       0.0000    \n\n MATERIAL          1     EX   =  0.3000000E+08  \n\n MATERIAL          1     PRXY =  0.3000000      \n\n DEFAULT ELEMENT DIVISIONS PER LINE BASED ON ELEMENT SIZE =  0.250    \n\n REAL CONSTANT NUMBER=        1\n\n GENERATE NODES AND ELEMENTS\n       IN AREAS         1  TO      1  IN STEPS OF      1\n    ** AREA     1 MESHED WITH      197 QUADRILATERALS,        2 TRIANGLES **\n\n NUMBER OF AREAS MESHED     =          1\n MAXIMUM NODE NUMBER        =        248\n MAXIMUM ELEMENT NUMBER     =        199\n\n GENERATE NODES AND ELEMENTS\n       IN AREAS         2  TO      2  IN STEPS OF      1\n    ** AREA     2 MESHED WITH      177 QUADRILATERALS,        1 TRIANGLES **\n\n NUMBER OF AREAS MESHED     =          1\n MAXIMUM NODE NUMBER        =        443\n MAXIMUM ELEMENT NUMBER     =        377\n\n REAL CONSTANT NUMBER=        2\n\n SELECT       FOR ITEM=AREA COMPONENT=    \n  IN RANGE         3 TO         12 STEP          1\n\n       10  AREAS (OF       12  DEFINED) SELECTED BY  ASEL  COMMAND.\n\n GENERATE NODES AND ELEMENTS   IN  ALL  SELECTED AREAS    \n    ** AREA     3 MESHED WITH     124 QUADRILATERALS,        0 TRIANGLES **\n    ** AREA     4 MESHED WITH      121 QUADRILATERALS,        1 TRIANGLES **\n    ** AREA     5 MESHED WITH     180 QUADRILATERALS,        0 TRIANGLES **\n    ** AREA     6 MESHED WITH     152 QUADRILATERALS,        0 TRIANGLES **\n    ** AREA     7 MESHED WITH     100 QUADRILATERALS,        1 TRIANGLES **\n    ** AREA     8 MESHED WITH     124 QUADRILATERALS,        0 TRIANGLES **\n    ** AREA     9 MESHED WITH      121 QUADRILATERALS,        1 TRIANGLES **\n    ** AREA    10 MESHED WITH     180 QUADRILATERALS,        0 TRIANGLES **\n    ** AREA    11 MESHED WITH     152 QUADRILATERALS,        0 TRIANGLES **\n    ** AREA    12 MESHED WITH       91 QUADRILATERALS,        1 TRIANGLES **\n\n NUMBER OF AREAS MESHED     =         10\n MAXIMUM NODE NUMBER        =       1966\n MAXIMUM ELEMENT NUMBER     =       1726\n\n SELECT       FOR ITEM=LINE COMPONENT=    \n  IN RANGE         1 TO          9 STEP          1\n\n        9  LINES (OF       38  DEFINED) SELECTED BY LSEL  COMMAND.\n\n ALSO SELECT  FOR ITEM=LINE COMPONENT=    \n  IN RANGE        12 TO         17 STEP          1\n\n       15  LINES (OF       38  DEFINED) SELECTED BY LSEL COMMAND.\n\n ALSO SELECT  FOR ITEM=LINE COMPONENT=    \n  IN RANGE        26 TO         38 STEP          3\n\n       20  LINES (OF       38  DEFINED) SELECTED BY LSEL COMMAND.\n\n ALSO SELECT  FOR ITEM=LINE COMPONENT=    \n  IN RANGE        24 TO         36 STEP          3\n\n       25  LINES (OF       38  DEFINED) SELECTED BY LSEL COMMAND.\n\n SELECT      ALL NODES (INTERIOR TO LINE, AND AT KEYPOINTS)\n        RELATED TO SELECTED LINE SET.\n\n        446  NODES (OF       1966  DEFINED) SELECTED FROM \n       25 SELECTED LINES BY NSLL COMMAND.\n\n SET SNAP FOR WORKING PLANE TO     0.50000E-01\n\n SET GRID SPACING FOR WORKING PLANE TO     0.10000    \n\n SET WP COORDINATE SYSTEM TYPE TO CARTESIAN.\n\n TURN WORKING PLANE GRID AND TRIAD ON.\n\n SET SNAP ANGLE FOR WORKING PLANE TO      5.0000    \n\n SET WORKING PLANE'S TOLERANCE TO     0.30000E-02\n\n *** NOTE ***                            CP =       0.281   TIME= 13:24:46\n The Working Plane cannot be displayed in NON-UI mode.                   \n  Command Ignored.                                                       \n\n ROTATE WORKING PLANE \n      0.0000     DEGREES ABOUT WORKING PLANE'S Z AXIS (X TOWARDS Y)\n     -90.000     DEGREES ABOUT WORKING PLANE'S X AXIS (Y TOWARDS Z)\n      0.0000     DEGREES ABOUT WORKING PLANE'S Y AXIS (Z TOWARDS X)\n\n ACTIVE COORDINATE SYSTEM SET TO        11  (CYLINDRICAL)\n     WITH PARAMETERS    1.000     AND    1.000    \n\n ACTIVE COORDINATE SYSTEM SET TO         11  (CYLINDRICAL)\n\n IN COORDINATE SYSTEM 11, ROTATE ALL SELECTED NODES.\n\n SPECIFIED CONSTRAINT UY   FOR SELECTED NODES            1 TO        1966 BY           1\n REAL=  0.00000000       IMAG=  0.00000000    \n\n SPECIFIED CONSTRAINT ROTX FOR SELECTED NODES            1 TO        1966 BY           1\n REAL=  0.00000000       IMAG=  0.00000000    \n\n ACTIVE COORDINATE SYSTEM SET TO          0  (CARTESIAN)  \n\n SELECT       FOR ITEM=LINE COMPONENT=    \n  IN RANGE        23 TO         23 STEP          1\n\n        1  LINES (OF       38  DEFINED) SELECTED BY LSEL  COMMAND.\n\n SELECT      ALL NODES (INTERIOR TO LINE, AND AT KEYPOINTS)\n        RELATED TO SELECTED LINE SET.\n\n          3  NODES (OF       1966  DEFINED) SELECTED FROM \n        1 SELECTED LINES BY NSLL COMMAND.\n\n SPECIFIED CONSTRAINT UZ   FOR SELECTED NODES            1 TO        1966 BY           1\n REAL=  0.00000000       IMAG=  0.00000000    \n\n SELECT       FOR ITEM=LINE COMPONENT=    \n  IN RANGE        17 TO         17 STEP          1\n\n        1  LINES (OF       38  DEFINED) SELECTED BY LSEL  COMMAND.\n\n SELECT      ALL NODES (INTERIOR TO LINE, AND AT KEYPOINTS)\n        RELATED TO SELECTED LINE SET.\n\n          3  NODES (OF       1966  DEFINED) SELECTED FROM \n        1 SELECTED LINES BY NSLL COMMAND.\n\n SPECIFIED CONSTRAINT UZ   FOR SELECTED NODES            1 TO        1966 BY           1\n REAL=  4.00000000       IMAG=  0.00000000    \n\n SELECT ALL ENTITIES OF TYPE= ALL  AND BELOW\n\n view point for window  1    1.0000      1.0000      1.0000    \n\n ELEMENT DISPLAYS USING REAL CONSTANT OR SECTION DATA WITH FACTOR     1.00\n\n SELECT       FOR ITEM=KP   COMPONENT=    \n  IN RANGE        33 TO         33 STEP          1\n\n        1  KEYPOINTS (OF       33  DEFINED) SELECTED BY  KSEL  COMMAND.\n\n SELECT      NODES ASSOCIATED WITH SELECTED KEYPOINTS\n\n          1  NODES (OF       1966  DEFINED) SELECTED FROM\n        1 SELECTED KEYPOINTS BY  NSLK  COMMAND.\n\n *GET  SW_NODE   FROM  NODE  ITEM=NUM  MAX   VALUE=  1202.00000     \n\n\n ***** ROUTINE COMPLETED *****  CP =         0.281\n\n\n\n *****  MAPDL SOLUTION ROUTINE  *****\n\n SELECT ALL ENTITIES OF TYPE= ALL  AND BELOW\n\n LARGE DEFORMATION ANALYSIS\n\n TIME=  4.0000    \n\n USE      10 SUBSTEPS INITIALLY THIS LOAD STEP FOR ALL  DEGREES OF FREEDOM\n FOR AUTOMATIC TIME STEPPING:\n   USE     25 SUBSTEPS AS A MAXIMUM\n   USE      5 SUBSTEPS AS A MINIMUM\n\n WRITE ALL  ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL \n   FOR ALL APPLICABLE ENTITIES\n\n FINISH SOLUTION PROCESSING\n\n\n ***** ROUTINE COMPLETED *****  CP =         0.281\n\n\n\n SELECT ALL ENTITIES OF TYPE= ALL  AND BELOW\n\n *** MAPDL - ENGINEERING ANALYSIS SYSTEM  RELEASE 2023 R1          23.1     ***\n Ansys Mechanical Enterprise                       \n 20120530  VERSION=WINDOWS x64   13:24:46  MAR 15, 2024 CP=      0.281\n\n                                                                               \n\n\n\n          ***** MAPDL ANALYSIS DEFINITION (PREP7) *****\n\n MATERIAL          2     EX   =  0.2800000E+08  \n\n MATERIAL          2     PRXY =  0.3000000      \n                                   \n   INPUT SECTION ID NUMBER                  2\n   INPUT SECTION TYPE                 BEAM\n   INPUT BEAM SECTION SUBTYPE         Circular Solid  \n   INPUT BEAM SECTION NAME                    \n                     \n   SECTION ID NUMBER IS:            2\n   BEAM SECTION TYPE IS:     Circular Solid  \n   BEAM SECTION NAME IS:             \n   COMPUTED BEAM SECTION DATA SUMMARY:\n    Area                 = 0.19620    \n    Iyy                  = 0.30616E-02\n    Iyz                  =-0.13553E-19\n    Izz                  = 0.30616E-02\n    Warping Constant     = 0.18172E-36\n    Torsion Constant     = 0.61233E-02\n    Centroid Y           =-0.77365E-17\n    Centroid Z           = 0.24867E-17\n    Shear Center Y       =-0.61607E-17\n    Shear Center Z       =-0.34245E-17\n    Shear Correction-xy  = 0.85691    \n    Shear Correction-yz  = 0.20793E-15\n    Shear Correction-xz  = 0.85691    \n                 \n    Beam Section is offset to CENTROID of cross section\n\n ELEMENT TYPE          2 IS BEAM188      3-D 2-NODE BEAM             \n  KEYOPT( 1- 6)=        0      0      0        0      0      0\n  KEYOPT( 7-12)=        0      0      0        0      0      0\n  KEYOPT(13-18)=        0      0      0        0      0      0\n\n CURRENT NODAL DOF SET IS  UX    UY    UZ    ROTX  ROTY  ROTZ\n  THREE-DIMENSIONAL MODEL\n\n ELEMENT TYPE SET TO         2\n\n MATERIAL NUMBER SET TO         2\n\n SECTION ID NUMBER=        2\n\n ****************************************\n *****CREATE NEW SPOT WELD SET: SWELD1  \n GENERATE SPOT WELD BETWEEN SURFACE (7       ) AND SURFACE (2       ).\n      THE FIRST SPOT WELD NODE =     1202\n      THE SECOND SPOT WELD NODE WILL BE CREATED\n      SPOTWELD RADIUS= 0.50000    \n      SEARCHING DISTANCE=  2.0000    \n      DEFORMABLE SPOT WELD WILL BE GENERATED. \n CREATED ELEMENT TYPE       3 AS TARGE170\n CREATED ELEMENT TYPE       4 AS CONTA174\n\n REAL CONSTANT SETS       3 AND       4 ARE CREATED\n     WITH INFLUENCE RADIUS =    0.50000     AND PINBALL RANGE=    0.50000    \n\n      NUMBER OF CONTACT ELEMENTS FOR BOTH SURFACES    GENERATED=     275\n\n *** NOTE ***                            CP =       0.281   TIME= 13:24:46\n Rotational degrees of freedom ROTX+ROTY+ROTZ have been activated for    \n pilot node 1967.                                                        \n\n *** NOTE ***                            CP =       0.281   TIME= 13:24:46\n Rotational degrees of freedom ROTX+ROTY+ROTZ have been activated for    \n pilot node 1969.                                                        \n      NEW ELEMENTS     278 ARE CREATED FOR SPOTWELD\n *******END OF SPOT WELD CREATION********\n\n ****************************************\n *****ADD MORE SPOT WELD SURFACES TO SET: SWELD1  \n      SEARCHING DISTANCE=  2.0000    ,\n ADD NEW SPOT WELD SURFACE: 12      \n\n      NUMBER OF CONTACT ELEMENTS FOR BOTH SURFACES    GENERATED=      92\n\n *** NOTE ***                            CP =       0.328   TIME= 13:24:47\n Rotational degrees of freedom ROTX+ROTY+ROTZ have been activated for    \n pilot node 1970.                                                        \n\n\n ***** ROUTINE COMPLETED *****  CP =         0.328\n\n\n\n *****  MAPDL SOLUTION ROUTINE  *****\n\n SELECT ALL ENTITIES OF TYPE= ALL  AND BELOW\n\n LARGE DEFORMATION ANALYSIS\n\n TIME=  4.0000    \n\n USE      10 SUBSTEPS INITIALLY THIS LOAD STEP FOR ALL  DEGREES OF FREEDOM\n FOR AUTOMATIC TIME STEPPING:\n   USE     25 SUBSTEPS AS A MAXIMUM\n   USE      5 SUBSTEPS AS A MINIMUM\n\n WRITE ALL  ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL \n   FOR ALL APPLICABLE ENTITIES\n\n *** NOTE ***                            CP =       0.344   TIME= 13:24:47\n The automatic domain decomposition logic has selected the MESH domain   \n decomposition method with 2 processes per solution.                     \n\n *****  MAPDL SOLVE    COMMAND  *****\n\n *** NOTE ***                            CP =       0.344   TIME= 13:24:47\n There is no title defined for this analysis.                            \n\n *** SELECTION OF ELEMENT TECHNOLOGIES FOR APPLICABLE ELEMENTS ***\n                ---GIVE SUGGESTIONS ONLY---\n\n ELEMENT TYPE         1 IS SHELL181. IT IS ASSOCIATED WITH ELASTOPLASTIC \n MATERIALS ONLY. KEYOPT(8)=2 IS SUGGESTED AND KEYOPT(3)=2 IS SUGGESTED FOR\n HIGHER ACCURACY OF MEMBRANE STRESSES; OTHERWISE, KEYOPT(3)=0 IS SUGGESTED.\n\n ELEMENT TYPE         2 IS BEAM188 . KEYOPT(3)=2 IS ALWAYS SUGGESTED.\n\n ELEMENT TYPE         2 IS BEAM188 . KEYOPT(15) IS ALREADY SET AS SUGGESTED.\n\n\n\n *** MAPDL - ENGINEERING ANALYSIS SYSTEM  RELEASE 2023 R1          23.1     ***\n Ansys Mechanical Enterprise                       \n 20120530  VERSION=WINDOWS x64   13:24:47  MAR 15, 2024 CP=      0.391\n\n                                                                               \n\n\n\n                       S O L U T I O N   O P T I O N S\n\n   PROBLEM DIMENSIONALITY. . . . . . . . . . . . .3-D                  \n   DEGREES OF FREEDOM. . . . . . UX   UY   UZ   ROTX ROTY ROTZ\n   ANALYSIS TYPE . . . . . . . . . . . . . . . . .STATIC (STEADY-STATE)\n   NONLINEAR GEOMETRIC EFFECTS . . . . . . . . . .ON\n   NEWTON-RAPHSON OPTION . . . . . . . . . . . . .PROGRAM CHOSEN   \n   GLOBALLY ASSEMBLED MATRIX . . . . . . . . . . .SYMMETRIC  \n\n *** NOTE ***                            CP =       0.391   TIME= 13:24:47\n SHELL181 and SHELL281 will not support real constant input at a future  \n release.  Please move to section input.                                 \n\n *** NOTE ***                            CP =       0.391   TIME= 13:24:47\n This nonlinear analysis defaults to using the full Newton-Raphson       \n solution procedure.  This can be modified using the NROPT command.      \n\n *** NOTE ***                            CP =       0.391   TIME= 13:24:47\n The conditions for direct assembly have been met.  No .emat or .erot    \n files will be produced.                                                 \n\n *** NOTE ***                            CP =       0.391   TIME= 13:24:47\n Internal nodes from 1971 to 1973 are created.                           \n 3 internal nodes are used for handling degrees of freedom on pilot      \n nodes of rigid target surfaces.                                         \n\n *** NOTE ***                            CP =       0.391   TIME= 13:24:47\n Internal nodes from 1971 to 1973 are created.                           \n 3 internal nodes are used for handling degrees of freedom on pilot      \n nodes of rigid target surfaces.                                         \n\n *** NOTE ***                            CP =       0.406   TIME= 13:24:47\n Force-distributed-surface identified by real constant set 3 and         \n contact element type 4 has been set up.  The pilot node 1967 is used    \n to apply the force which connects to other element 2098.  Internal MPC  \n will be built.                                                          \n The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ\n User defined influence range PINB            0.50000    \n ****************************************\n  \n\n *** NOTE ***                            CP =       0.406   TIME= 13:24:47\n Force-distributed-surface identified by real constant set 4 and         \n contact element type 4 has been set up.  The pilot node 1969 is used    \n to apply the force which connects to other element 2004.  Internal MPC  \n will be built.                                                          \n The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ\n User defined influence range PINB            0.50000    \n ****************************************\n  \n\n *** NOTE ***                            CP =       0.406   TIME= 13:24:47\n Force-distributed-surface identified by real constant set 5 and         \n contact element type 4 has been set up.  The pilot node 1970 is used    \n to apply the force which connects to other element 2004.  Internal MPC  \n will be built.                                                          \n The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ\n User defined influence range PINB            0.50000    \n ****************************************\n  \n  \n  \n\n *** NOTE ***                            CP =       0.406   TIME= 13:24:47\n Internal nodes from 1971 to 1973 are created.                           \n 3 internal nodes are used for handling degrees of freedom on pilot      \n nodes of rigid target surfaces.                                         \n\n  \n  \n     D I S T R I B U T E D   D O M A I N   D E C O M P O S E R\n  \n  ...Number of elements: 2098\n  ...Number of nodes:    1973\n  ...Decompose to 2 CPU domains\n  ...Element load balance ratio =     1.250\n\n\n                      L O A D   S T E P   O P T I O N S\n\n   LOAD STEP NUMBER. . . . . . . . . . . . . . . .     1\n   TIME AT END OF THE LOAD STEP. . . . . . . . . .  4.0000    \n   AUTOMATIC TIME STEPPING . . . . . . . . . . . .    ON\n      INITIAL NUMBER OF SUBSTEPS . . . . . . . . .    10\n      MAXIMUM NUMBER OF SUBSTEPS . . . . . . . . .    25\n      MINIMUM NUMBER OF SUBSTEPS . . . . . . . . .     5\n   MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. . . .    15\n   STEP CHANGE BOUNDARY CONDITIONS . . . . . . . .    NO\n   STRESS-STIFFENING . . . . . . . . . . . . . . .    ON\n   TERMINATE ANALYSIS IF NOT CONVERGED . . . . . .YES (EXIT)  \n   CONVERGENCE CONTROLS. . . . . . . . . . . . . .USE DEFAULTS\n   PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT\n   DATABASE OUTPUT CONTROLS\n      ITEM     FREQUENCY   COMPONENT\n       ALL        ALL               \n\n\n SOLUTION MONITORING INFO IS WRITTEN TO FILE= file.mntr                                                                                                                                                                                                                                                           \n\n *** NOTE ***                            CP =       0.406   TIME= 13:24:47\n Force-distributed-surface identified by real constant set 4 and         \n contact element type 4 has been set up.  The pilot node 1969 is used    \n to apply the force which connects to other element 2004.  Internal MPC  \n will be built.                                                          \n The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ\n User defined influence range PINB            0.50000    \n ****************************************\n  \n\n *** NOTE ***                            CP =       0.406   TIME= 13:24:47\n Force-distributed-surface identified by real constant set 5 and         \n contact element type 4 has been set up.  The pilot node 1970 is used    \n to apply the force which connects to other element 2004.  Internal MPC  \n will be built.                                                          \n The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ\n User defined influence range PINB            0.50000    \n ****************************************\n  \n MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS HAS BEEN MODIFIED              \n  TO BE, NEQIT = 25, BY SOLUTION CONTROL LOGIC.                          \n\n *** NOTE ***                            CP =       0.422   TIME= 13:24:47\n Predictor is ON by default for structural elements with rotational      \n degrees of freedom.  Use the PRED,OFF command to turn the predictor     \n OFF if it adversely affects the convergence.                            \n\n\n Range of element maximum matrix coefficients in global coordinates\n Maximum = 36623388.3 at element 2004.                                   \n Minimum = 1045703.97 at element 1284.                                   \n\n   *** ELEMENT MATRIX FORMULATION TIMES\n     TYPE    NUMBER   ENAME      TOTAL CP  AVE CP\n\n        1      1726  SHELL181      0.062   0.000036\n        2         2  BEAM188       0.000   0.000000\n        3         3  TARGE170      0.000   0.000000\n        4       367  CONTA174      0.000   0.000000\n Time at end of element matrix formulation CP = 0.5.                     \n\n ALL CURRENT MAPDL DATA WRITTEN TO FILE NAME= file.rdb\n  FOR POSSIBLE RESUME FROM THIS POINT\n     FORCE CONVERGENCE VALUE  =  0.3958E+06  CRITERION=   1979.    \n     MOMENT CONVERGENCE VALUE =  0.6913E+05  CRITERION=   345.6    \n\n DISTRIBUTED SPARSE MATRIX DIRECT SOLVER.\n  Number of equations =       10898,    Maximum wavefront =    624\n\n  Process memory allocated for solver              =    17.389 MB\n  Process memory required for in-core solution     =    16.783 MB\n  Process memory required for out-of-core solution =    12.888 MB\n\n  Total memory allocated for solver                =    28.418 MB\n  Total memory required for in-core solution       =    27.413 MB\n  Total memory required for out-of-core solution   =    20.176 MB\n\n *** NOTE ***                            CP =       0.609   TIME= 13:24:47\n The Distributed Sparse Matrix Solver is currently running in the        \n in-core memory mode.  This memory mode uses the most amount of memory   \n in order to avoid using the hard drive as much as possible, which most  \n often results in the fastest solution time.  This mode is recommended   \n if enough physical memory is present to accommodate all of the solver   \n data.                                                                   \n Distributed sparse solver maximum pivot= 10401050.5 at node 571 UZ.     \n Distributed sparse solver minimum pivot= 46.5108979 at node 1875 ROTZ.  \n Distributed sparse solver minimum pivot in absolute value= 46.5108979   \n at node 1875 ROTZ.                                                      \n     DISP CONVERGENCE VALUE   =  0.4000      CRITERION=  0.2000E-01\n    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.4000    \n     DISP CONVERGENCE VALUE   =  0.4000      CRITERION=  0.2000E-01\n     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.4000    \n     FORCE CONVERGENCE VALUE  =   1964.      CRITERION=   11.71    \n     MOMENT CONVERGENCE VALUE =   11.84      CRITERION=  0.3208    \n    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.9830E-02\n     DISP CONVERGENCE VALUE   =  0.2164E-02  CRITERION=  0.2000E-01 <<< CONVERGED\n     LINE SEARCH PARAMETER =  0.9997     SCALED MAX DOF INC = -0.9827E-02\n     FORCE CONVERGENCE VALUE  =   8.933      CRITERION=   11.46     <<< CONVERGED\n     MOMENT CONVERGENCE VALUE =  0.3296      CRITERION=  0.2967    \n    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.8735E-03\n     DISP CONVERGENCE VALUE   =  0.8004E-03  CRITERION=  0.2000E-01 <<< CONVERGED\n     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.8735E-03\n     FORCE CONVERGENCE VALUE  =  0.3493      CRITERION=   11.44     <<< CONVERGED\n     MOMENT CONVERGENCE VALUE =  0.2508E-01  CRITERION=  0.2967     <<< CONVERGED\n    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   3\n\n   *** ELEMENT RESULT CALCULATION TIMES\n     TYPE    NUMBER   ENAME      TOTAL CP  AVE CP\n\n        1      1726  SHELL181      0.016   0.000009\n        2         2  BEAM188       0.000   0.000000\n        4       367  CONTA174      0.000   0.000000\n\n   *** NODAL LOAD CALCULATION TIMES\n     TYPE    NUMBER   ENAME      TOTAL CP  AVE CP\n\n        1      1726  SHELL181      0.000   0.000000\n        2         2  BEAM188       0.000   0.000000\n        4       367  CONTA174      0.000   0.000000\n *** LOAD STEP     1   SUBSTEP     1  COMPLETED.    CUM ITER =      3\n *** TIME =  0.400000         TIME INC =  0.400000    \n *** AUTO STEP TIME:  NEXT TIME INC = 0.40000      UNCHANGED\n\n     FORCE CONVERGENCE VALUE  =   4125.      CRITERION=   38.60    \n     MOMENT CONVERGENCE VALUE =   39.52      CRITERION=  0.9011    \n     DISP CONVERGENCE VALUE   =  0.1053E-01  CRITERION=  0.2000E-01 <<< CONVERGED\n    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1250E-01\n     DISP CONVERGENCE VALUE   =  0.1053E-01  CRITERION=  0.2000E-01 <<< CONVERGED\n     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.1250E-01\n     FORCE CONVERGENCE VALUE  =   131.9      CRITERION=   41.27    \n     MOMENT CONVERGENCE VALUE =   3.054      CRITERION=  0.9635    \n    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.4881E-02\n     DISP CONVERGENCE VALUE   =  0.4881E-02  CRITERION=  0.2000E-01 <<< CONVERGED\n     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.4881E-02\n     FORCE CONVERGENCE VALUE  =   4.675      CRITERION=   40.60     <<< CONVERGED\n     MOMENT CONVERGENCE VALUE =  0.1712      CRITERION=  0.9479     <<< CONVERGED\n\n *** WARNING ***                         CP =       0.797   TIME= 13:24:47\n A reference moment value times the tolerance is used by the             \n Newton-Raphson method for checking convergence.  The calculated         \n reference MOMENT CONVERGENCE VALUE = 99.5650837 is less than a          \n threshold.  This threshold is internally calculated.  You can           \n overwrite it by specifying MINREF on the CNVTOL command.  Check         \n results carefully.                                                      \n    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   2\n *** LOAD STEP     1   SUBSTEP     2  COMPLETED.    CUM ITER =      5\n *** TIME =  0.800000         TIME INC =  0.400000    \n *** AUTO TIME STEP:  NEXT TIME INC = 0.60000      INCREASED (FACTOR = 1.5000)\n\n     FORCE CONVERGENCE VALUE  =   8067.      CRITERION=   108.2    \n     MOMENT CONVERGENCE VALUE =   98.52      CRITERION=   2.525    \n     DISP CONVERGENCE VALUE   =  0.2712E-01  CRITERION=  0.3000E-01 <<< CONVERGED\n    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2712E-01\n     DISP CONVERGENCE VALUE   =  0.2712E-01  CRITERION=  0.3000E-01 <<< CONVERGED\n     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.2712E-01\n     FORCE CONVERGENCE VALUE  =   318.7      CRITERION=   110.3    \n     MOMENT CONVERGENCE VALUE =   8.860      CRITERION=   2.575    \n    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.6290E-01\n     DISP CONVERGENCE VALUE   =  0.5985E-01  CRITERION=  0.3000E-01\n     LINE SEARCH PARAMETER =  0.9514     SCALED MAX DOF INC = -0.5985E-01\n     FORCE CONVERGENCE VALUE  =   30.05      CRITERION=   109.0     <<< CONVERGED\n     MOMENT CONVERGENCE VALUE =  0.7421      CRITERION=   2.545     <<< CONVERGED\n    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.8672E-02\n     DISP CONVERGENCE VALUE   =  0.8672E-02  CRITERION=  0.3000E-01 <<< CONVERGED\n     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.8672E-02\n     FORCE CONVERGENCE VALUE  =  0.7132      CRITERION=   108.9     <<< CONVERGED\n     MOMENT CONVERGENCE VALUE =  0.4550E-01  CRITERION=   2.543     <<< CONVERGED\n    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   3\n *** LOAD STEP     1   SUBSTEP     3  COMPLETED.    CUM ITER =      8\n *** TIME =   1.40000         TIME INC =  0.600000    \n *** AUTO TIME STEP:  NEXT TIME INC = 0.80000      INCREASED (FACTOR = 1.3333)\n\n     FORCE CONVERGENCE VALUE  =  0.1684E+05  CRITERION=   241.9    \n     MOMENT CONVERGENCE VALUE =   226.0      CRITERION=   5.646    \n     DISP CONVERGENCE VALUE   =  0.2194      CRITERION=  0.4000E-01\n    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2194    \n     DISP CONVERGENCE VALUE   =  0.2187      CRITERION=  0.4000E-01\n     LINE SEARCH PARAMETER =  0.9970     SCALED MAX DOF INC = -0.2187    \n     FORCE CONVERGENCE VALUE  =   659.7      CRITERION=   236.1    \n     MOMENT CONVERGENCE VALUE =   14.50      CRITERION=   5.513    \n    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.3210E-01\n     DISP CONVERGENCE VALUE   =  0.3210E-01  CRITERION=  0.4000E-01 <<< CONVERGED\n     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.3210E-01\n     FORCE CONVERGENCE VALUE  =   197.5      CRITERION=   234.1     <<< CONVERGED\n     MOMENT CONVERGENCE VALUE =   11.68      CRITERION=   5.465    \n    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.7983E-02\n     DISP CONVERGENCE VALUE   =  0.7983E-02  CRITERION=  0.4000E-01 <<< CONVERGED\n     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.7983E-02\n     FORCE CONVERGENCE VALUE  =   2.890      CRITERION=   234.1     <<< CONVERGED\n     MOMENT CONVERGENCE VALUE =  0.2515      CRITERION=   5.464     <<< CONVERGED\n    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   3\n *** LOAD STEP     1   SUBSTEP     4  COMPLETED.    CUM ITER =     11\n *** TIME =   2.20000         TIME INC =  0.800000    \n *** AUTO STEP TIME:  NEXT TIME INC = 0.80000      UNCHANGED\n\n     FORCE CONVERGENCE VALUE  =  0.2086E+05  CRITERION=   403.0    \n     MOMENT CONVERGENCE VALUE =   271.6      CRITERION=   9.408    \n     DISP CONVERGENCE VALUE   =  0.5811E-01  CRITERION=  0.4000E-01\n    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.5811E-01\n     DISP CONVERGENCE VALUE   =  0.5811E-01  CRITERION=  0.4000E-01\n     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.5811E-01\n     FORCE CONVERGENCE VALUE  =   548.7      CRITERION=   394.8    \n     MOMENT CONVERGENCE VALUE =   21.80      CRITERION=   9.217    \n    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1339E-01\n     DISP CONVERGENCE VALUE   =  0.1339E-01  CRITERION=  0.4000E-01 <<< CONVERGED\n     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.1339E-01\n     FORCE CONVERGENCE VALUE  =   71.38      CRITERION=   392.3     <<< CONVERGED\n     MOMENT CONVERGENCE VALUE =   1.081      CRITERION=   9.159     <<< CONVERGED\n    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   2\n *** LOAD STEP     1   SUBSTEP     5  COMPLETED.    CUM ITER =     13\n *** TIME =   3.00000         TIME INC =  0.800000    \n *** AUTO TIME STEP:  NEXT TIME INC = 0.50000      DECREASED (FACTOR = 0.6250)\n\n     FORCE CONVERGENCE VALUE  =  0.1149E+05  CRITERION=   510.1    \n     MOMENT CONVERGENCE VALUE =   131.9      CRITERION=   11.91    \n     DISP CONVERGENCE VALUE   =  0.2150E-01  CRITERION=  0.4000E-01 <<< CONVERGED\n    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1082    \n     DISP CONVERGENCE VALUE   =  0.2107E-01  CRITERION=  0.4000E-01 <<< CONVERGED\n     LINE SEARCH PARAMETER =  0.9799     SCALED MAX DOF INC =  0.1060    \n     FORCE CONVERGENCE VALUE  =   2280.      CRITERION=   499.4    \n     MOMENT CONVERGENCE VALUE =   167.0      CRITERION=   11.66    \n    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2185E-01\n     DISP CONVERGENCE VALUE   =  0.8542E-02  CRITERION=  0.4000E-01 <<< CONVERGED\n     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.2185E-01\n     FORCE CONVERGENCE VALUE  =   226.8      CRITERION=   499.3     <<< CONVERGED\n     MOMENT CONVERGENCE VALUE =   15.07      CRITERION=   11.66    \n    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1811E-01\n     DISP CONVERGENCE VALUE   =  0.5235E-02  CRITERION=  0.4000E-01 <<< CONVERGED\n     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.1811E-01\n     FORCE CONVERGENCE VALUE  =   63.20      CRITERION=   497.9     <<< CONVERGED\n     MOMENT CONVERGENCE VALUE =   4.057      CRITERION=   11.62     <<< CONVERGED\n    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   3\n *** LOAD STEP     1   SUBSTEP     6  COMPLETED.    CUM ITER =     16\n *** TIME =   3.50000         TIME INC =  0.500000    \n *** AUTO STEP TIME:  NEXT TIME INC = 0.50000      UNCHANGED\n\n     FORCE CONVERGENCE VALUE  =  0.1404E+05  CRITERION=   594.0    \n     MOMENT CONVERGENCE VALUE =   770.3      CRITERION=   13.87    \n     DISP CONVERGENCE VALUE   =  0.4300E-01  CRITERION=  0.4000E-01\n    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1080    \n     DISP CONVERGENCE VALUE   =  0.4300E-01  CRITERION=  0.4000E-01\n     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.1080    \n     FORCE CONVERGENCE VALUE  =   3607.      CRITERION=   581.1    \n     MOMENT CONVERGENCE VALUE =   187.3      CRITERION=   13.57    \n    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1026    \n     DISP CONVERGENCE VALUE   =  0.4779E-01  CRITERION=  0.4000E-01\n     LINE SEARCH PARAMETER =  0.9764     SCALED MAX DOF INC = -0.1001    \n     FORCE CONVERGENCE VALUE  =   2573.      CRITERION=   566.5    \n     MOMENT CONVERGENCE VALUE =   142.4      CRITERION=   13.23    \n    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2336E-01\n     DISP CONVERGENCE VALUE   =  0.1206E-01  CRITERION=  0.4000E-01 <<< CONVERGED\n     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.2336E-01\n     FORCE CONVERGENCE VALUE  =   350.6      CRITERION=   564.9     <<< CONVERGED\n     MOMENT CONVERGENCE VALUE =   32.40      CRITERION=   13.19    \n    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.6452E-02\n     DISP CONVERGENCE VALUE   =  0.2927E-02  CRITERION=  0.4000E-01 <<< CONVERGED\n     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.6452E-02\n     FORCE CONVERGENCE VALUE  =   51.00      CRITERION=   564.0     <<< CONVERGED\n     MOMENT CONVERGENCE VALUE =   6.037      CRITERION=   13.17     <<< CONVERGED\n    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   4\n *** LOAD STEP     1   SUBSTEP     7  COMPLETED.    CUM ITER =     20\n *** TIME =   4.00000         TIME INC =  0.500000    \n\n\n *** MAPDL BINARY FILE STATISTICS\n  BUFFER SIZE USED= 16384\n       11.938 MB WRITTEN ON ELEMENT SAVED DATA FILE: file0.esav\n        2.625 MB WRITTEN ON ASSEMBLED MATRIX FILE: file0.full\n        8.938 MB WRITTEN ON RESULTS FILE: file0.rst\n\n FINISH SOLUTION PROCESSING\n\n\n ***** ROUTINE COMPLETED *****  CP =         1.547\n\n\n"

Displacements#

# Enter post-processor
mapdl.post1()

# Plot the time step 1.
mapdl.set(1, 1)
mapdl.post_processing.plot_nodal_displacement(cmap="bwr")

# Plot the time step 3.
mapdl.set(1, 3)
mapdl.post_processing.plot_nodal_displacement(cmap="bwr")
  • spotweld
  • spotweld

Stress#

# Get the nodal and element component stress at time step 1.
mapdl.set(1, 1)
nodal_stress = mapdl.post_processing.nodal_stress_intensity()
print("Nodal stress : ", nodal_stress)

# Plot the element stress.
element_stress = mapdl.post_processing.element_stress("int")
print("Element stress : ", element_stress)
Nodal stress :  [0. 0. 0. ... 0. 0. 0.]
Element stress :  [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

The stress at the contact element simulating the spot weld.

Plot the nodal stress in the Z direction.

mapdl.post_processing.plot_nodal_component_stress("z")
spotweld

Get the cumulative equivalent stress and plot the von Mises stress.

eqv_stress = mapdl.post_processing.nodal_eqv_stress()
print("Cumulative equivalent stress : ", eqv_stress)
mapdl.post_processing.plot_nodal_eqv_stress()
spotweld
Cumulative equivalent stress :  [0. 0. 0. ... 0. 0. 0.]

Stop MAPDL

mapdl.finish()
mapdl.exit()

Total running time of the script: (0 minutes 7.750 seconds)